Area of Interest: Computers and Technology

Computer Engineering Technology - Computing Science (Co-op)

Ontario College Advanced Diploma Academic Year: 2019/2020
3 Years Program Code: 0006X01FWO
Ottawa Campus

Our Program

Gain the analytical thinking and problem-solving skills for a career in programming and software development.

The three-year Computer Engineering Technology - Computing Science Ontario College Advanced Diploma program prepares you for an information technology (IT) career in the private or public sectors. You gain the knowledge and skills to use a broad range of IT-based analytical thinking and problem-solving skills in support of the day-to-day operation of an enterprise’s software systems or in the development of new systems.

Learn a variety of programming languages (Java, C#, C++, C, and others) and operating systems (Windows, Unix/Linux, and QNX). In addition, you study the development tools and debugging techniques used to design, code and test integrated and/or embedded applications and software systems.

In your final year, you work in teams on sponsored real-world projects to develop a comprehensive application as part of the software engineering portion of the program. You also have the opportunity to select an elective course from an approved list, in areas that include graphics/multimedia, advanced database programming, android, business programming (Cobol), security and advanced web programming.

The majority of the program consists of courses in systems programming, software development, testing and maintenance. The balance of the curriculum consists of courses in technical communications skills (both oral and written), mathematics and general education electives.

This program offers you the opportunity to pursue three cooperative education (co-op) work term(s). Qualified students with a minimum GPA of 2.7 have the opportunity to apply for paid co-op employment to gain valuable work experience and contacts within industry.

Graduates may find employment as systems, integration, and applications programmers and/or testers, and as customer service representatives providing training and product support to clients of high technology corporations.

Employment

Graduates may find employment as systems, integration, and applications programmers and/or testers, and as customer service representatives providing training and product support to clients of high technology corporations. Graduates may also pursue careers in such diverse areas as game and multimedia development; GUI (graphical user interface) development; IT communications, IT security, real-time and database systems; web-based applications; and technical roles in all levels of government (federal, provincial and municipal).

Learning Outcomes

The graduate has reliably demonstrated the ability to:

- Diagnose, solve, troubleshoot, and document technical problems involving computing devices using appropriate methodologies.
- Integrate multiple software and hardware components using appropriate network...
• Integrate multiple software and hardware components using appropriate network architecture.

• Participate in analyzing, planning, designing, and developing the architecture of computing devices and systems.

• Plan, install, configure, modify, test, and maintain a variety of computer systems to meet functional requirements.

• Apply principles of digital and analog circuits to the implementation of embedded computing devices.

• Analyze, build, test, implement, and maintain applications.

• Evaluate and document security issues associated with a variety of computing devices and propose alternatives to increase product reliability.

• Articulate, defend, and conform to workplace expectations found in technology environments.

• Contribute to the successful completion of the project applying the project management principles in use.

• Identify and apply discipline-specific practices that contribute to the local and global community through social responsibility, economic commitment and environmental stewardship.

Program of Study

Level: 01 Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST8101</td>
<td>Computer Essentials</td>
<td>56.0</td>
</tr>
<tr>
<td>CST8110</td>
<td>Introduction to Computer Programming</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8215</td>
<td>Database</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8300</td>
<td>Achieving Success in Changing Environments</td>
<td>42.0</td>
</tr>
<tr>
<td>MAT8001C</td>
<td>Technical Mathematics for Computer Science</td>
<td>56.0</td>
</tr>
</tbody>
</table>

Level: 02 Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST8102</td>
<td>Operating System Fundamentals (GNU/Linux)</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8108</td>
<td>Network Programming Basics</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8132</td>
<td>Object-Oriented Programming</td>
<td>70.0</td>
</tr>
<tr>
<td>ENL1813T</td>
<td>Communications I</td>
<td>42.0</td>
</tr>
<tr>
<td>MAT8201</td>
<td>Calculus 1</td>
<td>42.0</td>
</tr>
</tbody>
</table>

Level: 03 Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST8130</td>
<td>Data Structures</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8216</td>
<td>Processor Architecture</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8234</td>
<td>C Language</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8238</td>
<td>Web Programming</td>
<td>70.0</td>
</tr>
<tr>
<td>ENL2019T</td>
<td>Technical Communication for Engineering Technologies</td>
<td>42.0</td>
</tr>
</tbody>
</table>

Co-op: 01 Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>WKT8001</td>
<td>Work Term I</td>
<td></td>
</tr>
</tbody>
</table>

Level: 04 Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST8152</td>
<td>Compilers</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8219</td>
<td>C++ Programming</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8221</td>
<td>Java Application Programming</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8233</td>
<td>Numerical Computing</td>
<td>70.0</td>
</tr>
</tbody>
</table>

Choose one from equivalencies Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GED0006X</td>
<td>General Education Elective</td>
<td>42.0</td>
</tr>
</tbody>
</table>

Co-op: 02 Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WKT8002 Work Term II

Co-op: 03

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>WKT8003 Work Term III</td>
<td></td>
</tr>
</tbody>
</table>

Level: 05

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST8218 Web Enterprise Applications</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8227 Interfacing</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8353 Software Design and Testing</td>
<td>84.0</td>
</tr>
<tr>
<td>CST8359 .NET Enterprise Application Development</td>
<td>70.0</td>
</tr>
</tbody>
</table>

Level: 06

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST8244 Real-Time Programming</td>
<td>70.0</td>
</tr>
<tr>
<td>CST8354 Industrial Application Development and Quality Assurance</td>
<td>84.0</td>
</tr>
</tbody>
</table>

Elective: choose 1

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST2335 Mobile Graphical Interface Programming</td>
<td>56.0</td>
</tr>
<tr>
<td>CST2355 Database Systems</td>
<td>56.0</td>
</tr>
<tr>
<td>CST8236 Graphics</td>
<td>56.0</td>
</tr>
<tr>
<td>CST8237 Game Programming</td>
<td>56.0</td>
</tr>
<tr>
<td>CST8283 Business Programming</td>
<td>56.0</td>
</tr>
<tr>
<td>CST8333 Programming Language Research Project</td>
<td>56.0</td>
</tr>
<tr>
<td>CST8390 Business Intelligence and Data Analytics</td>
<td>56.0</td>
</tr>
</tbody>
</table>

Fees for the 2019/2020 Academic Year

Tuition and related ancillary fees for this program can be viewed by using the Tuition and Fees Estimator tool at https://www.algonquincollege.com/fee-estimator.

Further information on fees can be found by visiting the Registrar`s Office website at https://www.algonquincollege.com/ro.

Fees are subject to change.

Additional program related expenses include:

Supplies can be purchased at the campus store. For more information about books, go to https://www3.algonquincollege.com/etextbooks.

Admission Requirements for the 2020/2021 Academic Year

College Eligibility

- Ontario Secondary School Diploma (OSSD) or equivalent. Applicants with an OSSD showing senior English and/or Mathematics courses at the Basic Level, or with Workplace or Open courses, will be tested to determine their eligibility for admission; OR

- Academic and Career Entrance (ACE) certificate; OR

- General Educational Development (GED) certificate; OR

- Mature Student status (19 years of age or older and without a high school diploma at the start of the program). Eligibility may be determined by academic achievement testing for which a fee of $50 (subject to change) will be charged.

Program Eligibility

- English, Grade 12 (ENG4C or equivalent).

- Mathematics, (Grade 12 MCT4C) or (Grade 11 MCR3U) or equivalent; or (Grade 12 MAP4C with a grade of 80% or higher) or (Grade 11 MCF3M with a grade of 70% or higher).
• International applicants must provide proof of the subject specific requirements noted above along with proof of either: (IELTS / TOEFL) IELTS-International English Language Testing Service (Academic) Overall band of 6.0 with a minimum of 5.5 in each band; OR TOEFL-Internet-based (iBT)-overall 80, with a minimum of 20 in each component: Reading: 20; Listening: 20; Speaking: 20; Writing: 20.

• Applicants with international transcripts must provide proof of the subject specific requirements noted above and may be required to provide proof of language proficiency.

Should the number of qualified applicants exceed the number of available places, applicants will be selected on the basis of their proficiency in English and mathematics.

Note: Applicants should have basic computer skills such as keyboard proficiency, Internet browsing and searching, and proficiency with an office software suite (word processing, spreadsheets, etc.) prior to the start of the program. The Mobile Learning Center Coach (C102) offers training in these skills if needed. While programming experience is not a requirement to enter the program, aptitude for programming is necessary and would include strong language, problem solving and logic skills. This is often demonstrated by skill and enjoyment in solving word problems in math.

Applicants who have been out of school for a period of time are encouraged to take a refresher course in mathematics, prior to the start of classes. Refresher/upgrading courses are available through Academic Upgrading courses, the Centre for Continuing and Online Learning and through local school boards.

Admission Requirements for 2019/2020 Academic Year

College Eligibility

• Ontario Secondary School Diploma (OSSD) or equivalent. Applicants with an OSSD showing senior English and/or Mathematics courses at the Basic Level, or with Workplace or Open courses, will be tested to determine their eligibility for admission; OR

• Academic and Career Entrance (ACE) certificate; OR

• General Educational Development (GED) certificate; OR

• Mature Student status (19 years of age or older and without a high school diploma at the start of the program). Eligibility may be determined by academic achievement testing for which a fee of $50 (subject to change) will be charged.

Program Eligibility

• English, Grade 12 (ENG4C or equivalent).

• Mathematics, (Grade 12 MCT4C) or (Grade 11 MCR3U) or equivalent; or (Grade 12 MAP4C with a grade of 80% or higher) or (Grade 11 MCF3M with a grade of 70% or higher).

• International applicants must provide proof of the subject-specific requirements noted above along with proof of either: (IELTS / TOEFL) IELTS-International English Language Testing Service (Academic) Overall band of 6.0 with a minimum of 5.5 in each band; OR TOEFL-Internet-based (iBT)-overall 80, with a minimum of 20 in each component: Reading: 20; Listening: 20; Speaking: 20; Writing: 20.

• Applicants with international transcripts must provide proof of the subject-specific requirements noted above and may be required to provide proof of language proficiency.

Should the number of qualified applicants exceed the number of available places, applicants will be selected on the basis of their proficiency in English and mathematics.

Note: Applicants should have basic computer skills such as keyboard proficiency, Internet browsing and searching, and proficiency with an office software suite (word processing, spreadsheets, etc.) prior to the start of the program. The Mobile Learning Center Coach (C102) offers training in these skills if needed. While programming experience is not a requirement to enter the program, aptitude for programming is necessary and would include strong language, problem solving and logic skills. This is often demonstrated by skill and enjoyment in solving word problems in math.

Applicants who have been out of school for a period of time are encouraged to take a refresher
course in mathematics, prior to the start of classes. Refresher/upgrading courses are available through Academic Upgrading courses, the Centre for Continuing and Online Learning and through local school boards.

Application Information

COMPUTER ENGINEERING TECHNOLOGY - COMPUTING SCIENCE (CO-OP)
Program Code 0006X01FWO

Applications to full-time day programs must be submitted with official transcripts showing completion of the academic admission requirements through:

ontariocolleges.ca
60 Corporate Court
Guelph, Ontario N1G 5J3
1-888-892-2228

Students currently enrolled in an Ontario secondary school should notify their Guidance Office prior to their online application at http://www.ontariocolleges.ca/.

Applications for Fall Term and Winter Term admission received by February 1 will be given equal consideration. Applications received after February 1 will be processed on a first-come, first-served basis as long as places are available.

International applicants please visit this link for application process information: https://algonquincollege.force.com/myACint/.

For further information on the admissions process, contact:

Registrar’s Office
Algonquin College
1385 Woodroffe Ave
Ottawa, ON K2G 1V8
Telephone: 613-727-0002
Toll-free: 1-800-565-4723
TTY: 613-727-7766
Fax: 613-727-7632
Email: mailto:AskUs@algonquincollege.com

Additional Information

Programs at Algonquin College are Bring Your Own Device (BYOD). To see the BYOD requirements for your program, please visit: https://www7.algonquincollege.com/byod/.

Cooperative education (Co-op) allows students to integrate their classroom learning with a real-world experience through paid work terms. Two academic terms prior to the cooperative education work term, students are required to actively participate in and successfully complete the self-directed co-op online readiness activities and in-person workshops.

Students must actively conduct a guided, self-directed job search and are responsible for securing approved program-related paid co-op employment. Students compete for co-op positions alongside students from Algonquin and other Canadian and international colleges and universities. Algonquin College’s Co-op Department provides assistance in developing co-op job opportunities and facilitates the overall process, but does not guarantee that a student will obtain employment in a co-op work term. Co-op students may be required to relocate to take part in the co-op employment opportunities available in their industry and must cover all associated expenses; e.g., travel, work permits, visa applications, accommodation and all other incurred expenses.

Co-op work terms are typically 14 weeks in duration and are completed during a term when students are not taking courses.

International students enrolled in a co-op program are required by Immigration, Refugees and Citizenship Canada (IRCC) to have a valid co-op work permit prior to commencing their work term. Without this document, International students are not legally eligible to engage in work in Canada that is a mandatory part of an academic program.
Computer Engineering Technology - Computing Science (Co-op)

For more information, please visit https://www.algonquincollege.com/coop.

Curriculum is reviewed annually to reflect evolving industry standards in the information technology field.

For more information, please email coordsci@algonquincollege.com or visit https://www.algonquincollege.com/sat.

Course Descriptions

CST2335 Mobile Graphical Interface Programming

Students explore graphical user interface programming in a mobile Android environment. Students learn how to program applications using the latest Android development tools. Topics include application architecture, interface design, network communication, and database integration.

Prerequisite(s): CST8215 and CST8284
Corerequisite(s): none

CST2355 Database Systems

Students acquire practical experience using market-leading object-relational database management systems like Oracle and MySQL. Students obtain hands-on experience with advanced engineering modeling tools along with SQL, SQL scripts and programming with Oracle’s PL/SQL blocks. Database concepts covered include advanced SQL, case structures, rollup and cube operations, metadata manipulation, data storage and retrieval, security and transaction control and data warehousing. Open source database software is also explored.

Prerequisite(s): CST8282 or CST8215
Corerequisite(s): none

CST8101 Computer Essentials

The essentials of computer software, hardware, and laptop management form the foundation for building further technical programming skills. Learn to configure your laptop environment, basic PC and troubleshoot problems. Create backups, install virus protection, and manage files through a basic understanding of the Windows Operating System. Install and configure the Windows Operating System, and a virtual machine environment. Explore computer organization including basic numerical systems, functional hardware and software components needed to run programs.

Prerequisite(s): none
Corerequisite(s): none

CST8102 Operating System Fundamentals (GNU/Linux)

Learn the basic concepts and components of Operating Systems (OS), and how they function and interact with hardware and software components. Explore the details of operating system structures, process management, storage management, installation, configuration, and administration both in theory and through practical assignments based on the GNU/Linux operating system. Lab exercises are designed to demonstrate how to implement the theory by developing skills using the powerful GNU/Linux command-line tools and utilities.

Prerequisite(s): CST8101
Corerequisite(s): none

CST8108 Network Programming Basics

Software programming in today's environment requires detailed knowledge of the underlying network topology and its implementation. Gaining an appreciation and perspective of this technology is imperative to developing good network programming applications. Topics include the basic structure and design of networks, layered communications models, industry standards for network media and protocols with an emphasis on data communications, TCP/IP protocol suite, Ethernet and socket programming. Labs include practical exercises in using socket programming along with common networking tools for diagnosing and troubleshooting typical
network programming problems.

Prerequisite(s): none
Corerequisite(s): CST8132

CST8110 Introduction to Computer Programming

Introduction to algorithms and Object-Oriented software development. Use the Java programming language to develop programs which contain input and output, if statements, loops, classes and arrays. An emphasis is placed on problem analysis, testing, pseudocode, correctness, structure, style and documentation. Theory is reinforced with application by means of practical laboratory assignments.

Prerequisite(s): none
Corerequisite(s):none

CST8130 Data Structures

Learn to use a variety of data structures and associated processing algorithms to manage massive amounts of data. Explore concepts using Object-Oriented Programming (in Java). Implement some solutions using first principle coding and others using predefined Collection and Map classes. Master techniques to assess the relative performance of alternative solutions (Big-O analysis) and make well-reasoned choices of selected data structures.

Prerequisite(s): CST8132
Corerequisite(s):none

CST8132 Object-Oriented Programming

Learn extended Object-Oriented Programming concepts and develop the solid programming skills that are prerequisites for higher-level courses. Java is used to illustrate the theoretical concepts and develop solutions to real-world problems of increasing complexity.

Prerequisite(s): CST8110
Corerequisite(s):none

CST8152 Compilers

Introduction to the basic principles, techniques, and tools used to translate text expressed in one language to equivalent text expressed in another language. The concepts discussed and the programming concepts studied in previous courses are applied to develop and program the front-end of a simple compiler or interpreter using ANSI C as implementation language. The ideas and techniques discussed could be applied to general software design and to parsing of structured files, such as HTML, XML, register and configuration files.

Prerequisite(s): CST8234
Corerequisite(s):none

CST8215 Database

Students learn the fundamentals of Relational Databases design using Entity Relation diagrams, and use SQL to create, modify and query a database. Students design and create databases that are maintainable, secure and adaptable to change in business requirements, using Normalization. Students are able to compare and appreciate a Database Management System (DBMS) and its components with legacy systems.

Prerequisite(s): none
Corerequisite(s):none

CST8216 Processor Architecture

Students learn how logic circuits are used in typical microprocessors. Elementary electronic
Computer Engineering Technology - Computing Science (Co-op)

components, basic numerical systems and operations, Boolean logic and logic gates are explored with their relationship to a microprocessor/microcomputer. Students also learn microcontroller programming using assembly language. The theory is supported by lab exercises involving the creation and analysis of logic circuits using simulation software and the programming of a microcontroller.

Prerequisite(s): CST8101 and CST8110
Corerequisite(s): none

CST8218 Web Enterprise Applications

Expand on HTML, Java, and database knowledge to develop skills in building scalable applications built using the Java Enterprise Edition framework. Students apply these skills in developing a web application project with a database layer, business logic, presentation logic and client-side components, as well as a REST Interface for B2B and Mobile support. Design topics involve multitier architecture, Agile methods for enterprise development projects, Object Relational Mapping, XML and AJAX, internationalization, web security and cryptography, and privacy principles.

Prerequisite(s): CST8221 and CST8238
Corerequisite(s): none

CST8219 C++ Programming

Learn C++, building on the concepts of memory management and object-oriented programming studied in other languages in previous courses. Used as a language of choice for high performance applications, the C++ language expands the C paradigm to include encapsulation, operator overloading, inheritance and polymorphism. In addition, C++ Standard Library is introduced as a ready-made framework for application development.

Prerequisite(s): CST8234
Corerequisite(s): none

CST8221 Java Application Programming

Students learn advanced Java technology by developing multi-tiered applications featuring a rich graphical user interface (GUI). Students also learn how to build a GUI, object-oriented design patterns, networking, multi-threading and database connectivity and deployment.

Prerequisite(s): CST8130
Corerequisite(s): none

CST8227 Interfacing

Specific constraints, challenges, and attributes that are unique to embedded systems are explored. The role and capabilities of such compact systems in today’s world is analyzed, with detailed reference to available processing speed, storage and power consumption. Students gain knowledge of sensors and actuators, their operational parameters and characteristics. Methods for interfacing, sampling, and controlling the devices are studied, including polled vs. interrupt driven, D to A and A to D conversions and simple digital vs. PWM outputs. Practical lab exercises include interfacing to real world devices using a small embedded development board.

Prerequisite(s): CST8152 and CST8216
Corerequisite(s): none

CST8233 Numerical Computing

Learn the usefulness and power of numerical computing methods to perform a wide range of engineering and scientific tasks processing real-world data using C (or C++) as the underlying programming language. These include series implementation of mathematical functions, statistical data analysis, fitting data with linear regression, numerical differentiation and integration and solving ordinary differential equations to simulate real-time dynamical systems.

Prerequisite(s): CST8234 and MAT8201
CST8234 C Language

Students learn the basics of the C Programming language. Building upon the foundation laid in prerequisite courses, application design, development, debugging and testing in the Unix/Linux operating system environment are addressed. Topics covered include regular expressions, memory management, I/O and file system resources (buffered and unbuffered), and safe programming practices are emphasized.

Prerequisite(s): CST8102 and CST8110
Corerequisite(s): none

CST8236 Graphics

Study the techniques and methods used to develop graphics applications running on modern computers. Some topics remain constant in time and constitute much of the theoretical framework. Other topics are driven by developments in hardware and are changing rapidly. The curriculum has been designed to balance these two aspects and to emphasize code development using modern Application Programming Interfaces (API) that harness the power of current graphics processors.

Prerequisite(s): CST8130 and CST8234
Corerequisite(s): none

CST8237 Game Programming

Combine skills learned in previous courses to develop advanced multimedia and game applications that run on a PC. Using the power of the Graphics Processing Unit (GPU) on the video card it is possible to program shaders that simulate real-life objects moving under the laws of physics. As an end product, the course develops a complete virtual 3D world with terrain, and a dynamic environment that the user can explore and interact with.

Prerequisite(s): CST8130 and CST8234
Corerequisite(s): none

CST8238 Web Programming

Students learn website design and implementation. HTML5, JavaScript, PHP and XML are used to explore web-based solutions to problems of increasing interactivity and complexity. Online lectures are reinforced by practical assignments that encourage students to construct and maintain their own websites.

Prerequisite(s): CST8108 and CST8110 and CST8215
Corerequisite(s): none

CST8244 Real-Time Programming

Building on the student's prior knowledge of Linux/Unix, learn the difference between Real-Time/Embedded system programming and batch processing. Design real-time applications in C Language using the QNX Real-Time Operating System and the special functions built into QNX to enhance RT and embedded system programming - exceptions, messages resource managers and timers. Design topics include finite state machines, multi-threading, and distributed multi-processor systems.

Prerequisite(s): CST8227
Corerequisite(s): none

CST8283 Business Programming

Create COBOL programs in a business environment using structured methodology in the latest visual programming environment. Topics include: output design; logic design tools; structured,
top-down and modular coding; testing and debugging; and documentation. The programs include interactive, file-based, and database processing of data related to business problems. Arrays, indexed files, database access and sub-programs are included.

Prerequisite(s): CST8110
Corerequisite(s): none

CST8300 Achieving Success in Changing Environments

Rapid changes in technology have created personal and employment choices that challenge each of us to find our place as contributing citizens in the emerging society. Life in the 21st century presents significant opportunities, but it also creates potential hazards and ethical problems that demand responsible solutions. Students explore the possibilities ahead, assess their own aptitudes and strengths, and apply critical thinking and decision-making tools to help resolve some of the important issues in our complex society with its competing interests.

Prerequisite(s): none
Corerequisite(s): none

CST8333 Programming Language Research Project

Learning a new programming language or framework on your own is a challenge faced by programmers on the job as part of their career. Students explore this process of self-study by applying project planning, applied research, testing, and implementation of basic and advanced concepts appropriate to the language or framework under study. Students develop major milestones and deliverables culminating in a project and reflective summary submission.

Prerequisite(s): CST8284
Corerequisite(s): none

CST8353 Software Design and Testing

Learn the basics of Agile software development including the Scum, Kanban and Lean methodologies. Real-world software development projects are assigned with clients. The phases of software development are introduced including gathering requirements; document, design, code and test working software prototypes. The project will be done as an Agile team to stay organized, collaborate and solve problems. Knowledge about testing, debugging and QA process is expanded. In addition to the software project, this course consists of lectures, case studies, and both individual and group practical lab work.

Prerequisite(s): CST8152
Corerequisite(s): none

CST8354 Industrial Application Development and Quality Assurance

Project teams are introduced to the practical aspects of design, testing and quality assurance of the software engineering process. Under the direction of one or more staff advisors, teams are provided the opportunity to apply sound software engineering principles to the implementation of their real-world industrial application. Activities include the implementation of software products, integration with hardware (where applicable), writing and executing test scripts, debugging, creation of installation packages, addressing security issues, adherence to Quality Assurance standards and the creation of supporting documentation. A technical presentation to faculty and a formal project-launch showcase to peers, faculty, staff and invited guests is an integral part of the course. An overview of security, product implementation, version control and maintainability issues are discussed.

Prerequisite(s): CST8353
Corerequisite(s): none

CST8359 .NET Enterprise Application Development

Students use C#/ASP.NET/WebServices/MS SQL to produce applications for a wide range of different environments. Students set up and deploy ASP.NET MVCv5 applications, install virtual
machines, learn about App Fabric, create databases and distributed storage in a cloud computing environment (like Windows Azure).

Prerequisite(s): CST8221
Corerequisite(s): none

CST8390 Business Intelligence and Data Analytics

Business Intelligence (BI) can be broadly defined as a set of applications, infrastructure, and best practices that integrate and transform raw data into actionable information used for planning, monitoring and analyzing processes. The foundation underlying this process is the Data Analytics that explore the data, identify the relationships and patterns in a meaningful way. Students examine the components and best practices of Business Intelligence technology, and how it guides operational to strategic business decisions in the context of real-world applications. Data analytics techniques are used to derive insight using statistical software.

Prerequisite(s): CST8215 and CST8284 and CST8285 and MAT8001
Corerequisite(s): none

ENL1813T Communications I

Communication remains an essential skill sought by employers, regardless of discipline or field of study. Using a practical, vocation-oriented approach, students focus on meeting the requirements of effective communication. Through a combination of lectures, exercises, and independent learning, students practice writing, speaking, reading, listening, locating and documenting information and using technology to communicate professionally. Students develop and strengthen communication skills that contribute to success in both educational and workplace environments.

Prerequisite(s): none
Corerequisite(s): none

ENL2019T Technical Communication for Engineering Technologies

The ability to communicate effectively in a technically-oriented interdisciplinary workplace is a foundational skill in an innovation-driven economy. Students are exposed to exercises and assignments designed to foster independent and collaborative critical thinking, research, writing, visual communication and presentation skills related to technical topics.

Prerequisite(s): ENL1813T
Corerequisite(s): none

GED0006X General Education Elective

Students choose one course, from a group of general education electives, which meets one of the following four theme requirements: Arts in Society, Civic Life, Social and Cultural Understanding, and Science and Technology.

Prerequisite(s): none
Corerequisite(s): none

MAT8001C Technical Mathematics for Computer Science

The study of algebraic and transcendental functions is an essential prerequisite to Calculus. Students manipulate algebraic expressions, solve algebraic equations and linear systems and learn the properties of and graph algebraic and transcendental functions. Students investigate computer number systems in addition to Boolean algebra and logic to help solve problems involving computer systems. Students also study the addition and subtraction of vectors using vector components. Delivered in a modular format, this course is equivalent to the completion of all of the following math modules MAT8100 - a, b, c, d, e, f, h, l, and m.

Prerequisite(s): none
Corerequisite(s): none
MAT8201 Calculus I

Calculus is used to determine many important physical quantities. Students differentiate algebraic and transcendental functions and sketch various curves. Students integrate simple algebraic and transcendental functions. Students use integration to solve applications relating to their program of study, such as the area under a curve.

Prerequisite(s): MAT8050 and MAT8051 or MAT8050P and MAT8051 or MAT8100 or MAT8100P or MAT8001C
Corerequisite(s): none

WKT8001 Work Term I

Students complete a cooperative work term, and submit a written report which documents the location of employment and the duties performed.

Prerequisite(s): none
Corerequisite(s): none

WKT8002 Work Term II

Students complete a cooperative work term, and submit a written report which documents the location of employment and the duties performed.

Prerequisite(s): WKT8001
Corerequisite(s): none

WKT8003 Work Term III

Students complete a cooperative work term, and submit a written report which documents the location of employment and the duties performed.

Prerequisite(s): WKT8002
Corerequisite(s): none